

Lincoln Aniversity

Math 10 – College Mathematics

COURSE SYLLABUS SPRING 2020

Instructor:	Professor Len Filane		
Lecture Schedule:	Wd 9.00-11.45 am		
Credits:	3 units / 45 lecture hours		
Level:	Introductory (I)		
Office Hours:	Wd. 4.15-5.15 pm, teacher's lounge, main bldg., 4 th fl.		
	e-mail: lfilane@lincolnuca.edu		
Textbooks:	: Introductory and Intermediate Algebra, by M. Lial, J.		
	Hornsby, T. McGinnis. Publisher: Pearson, 5 th Ed. ISBN 13:		
	978-0-321-86553-3, ISBN 10: 0-321-86553-7		
Complimentary			
Textbook:	: Blitzer, Robert F. Intermediate Algebra for College Students.		
	7th. Prentice Hall. 2016 ISBN-13: 978-0134178943		
Last Revision:	Jan. 7, 2020		
	DISCLAIMER		

This syllabus may be changed or updated according to the instructor's discretion.

CATALOG DESCRIPTION

Algebra: fundamental algebraic concepts and operations, number bases, linear equations and inequalities, functions, graphing. Graphs and functions: study of functions including exponents and radical polynomials, geometric series, rational expressions, quadratic equations, and logarithms.

COURSE LEARNING OUTCOMES¹

	Course LO	Program LO	Institutional LO	Assessment
1	Analyze, interpret, and communicate results of exponential, logarithmic, rational, and discrete models in a logical manner from four points of view – visual, formula, numerical, and written.	GELO 3	ILO 1a, ILO 2a	Tests, assignments

¹ Detailed description of learning outcomes and information about the assessment procedure are available at the Center for Teaching and Learning website (ctl.lincolnuca.edu).

 Evaluate real-world situations and distinguish between and apply exponential, logarithmic, rational, and discrete function models appropriately. 	GELO 5	ILO 1a	Tests, assignments
---	--------	--------	-----------------------

INSTRUCTIONAL METHODS

This is a classroom instruction course.

Lectures, demonstration of the solutions for problems by the instructor, solving problems in class independently and in groups, class discussions, "student teaching", at-the-board students' demonstrations of the solutions, frequent discussions of the homework.

Students are strongly encouraged to use additional resources, such as the Internet, the library, etc. The emphasis will be on learning by doing.

Assignments and projects require students to actively use resources of the library. Detailed guide to business *resources of the library* as well as the description of Lincoln University approach to *information literacy* are available at the Center for Teaching and Learning website (ctl.lincolnuca.edu).

ACADEMIC HONESTY & INTEGRITY HONOR CODE

The faculty, administration, and staff reinforce academic honesty and principles of academic honor. Independent learning is vital to the requirements of honesty and integrity in the performance of academic assignments, both in the classroom and outside. Students should avoid academic dishonesty in all of its forms, including plagiarism, cheating, and other forms of academic misconduct. The University reserves the right to determine what constitutes a violation of academic honesty and integrity.

ASSESSMENT

TWO-FOUR CLASS QUIZZES HOMEWORK CLASS WORK/CLASS PARTICIPATION MIDTERM EXAM FINAL EXAM

CALCULATION OF FINAL GRADES:

Homework:	7%
Quizzes :	20%
Midterm Exam:	23%
Final Exam :	35%
Class Participation:	15%

<u>**GRADING SCALE**</u>: (Should follow Department and/or College Template)

Grade	А	В	С	D	F
GPA Points	4.0	3.0	2.0	1.0	0
%	90-100	80-89	70-79	60-69	less than 60

Re-taking or making up of the quizzes and exams will not be offered.

CLASS WORK (class participation):

Your goal should be to demonstrate the grasp of the concepts, ability to solve problems and critical thinking skills in analyzing them. You should strive to ask relevant questions, volunteer relevant answers, as well as volunteer to solve problems on the board, and actively participate in class discussions. If you were tardy or missed a class you did not participate in class work. It may be reflected in your grade for class work.

Class time is for learning only. You should refrain from discussing any issue that is not directly related to the processes of learning and concept understanding.

Issues related to grades for tests or teaching methodology should be raised only outside of class time.

Class work is graded on the scale of 0-10.

HOMEWORK

Written HW is graded on a scale 0-10. Since its impossible for me to exactly predict the rate of covering the material, I will give homework every class as we move forward. I will collect homework on selected days only. Bring your current homework to every class. Your homework must be in a ring binder, stapled, be neat and legible. Avoid submitting "dog ears"! If you write chaotically I would not be able to follow your work, hence I would not be able to grade it. HW that does not meet the above outlined requirements will be rejected and awarded zero points. Show your work in detail. If you do not show all the work required to complete the homework problems, I will reduce your homework credit. Just showing the answer will not be accepted for any credit.

All homework is to be done by the enrolled student and must be your own work. Any attempt to copy or re-use homework or share the same work between the students will result in a zero credit.

No late homework will be accepted. I will not accept any HW after my announcement of the end of the collection process. If you know that you will be absent in class, please email your scanned homework to me prior to the beginning of the current class. If you have a question or an issue regarding your HW, then the best way to resolve it is after class hours.

Do not copy the solutions from the instructor's solution manual or online. If you do it, you will be guilty of plagiarism which is a violation of student conduct code, and may result in you being disciplined, suspended from class or expelled from the school.

UNIVERSITY ATTENDANCE POLICY:

Lincoln University uses the class method of teaching, which assumes that each student has something to contribute and something to gain by attending class. It further assumes that there is much more instruction absorbed in the classroom than can be tested on examinations. Therefore,

students are expected to attend all regularly scheduled class meetings and should exhibit good faith in this regard.

INSTRUCTOR'S ATTENDANCE POLICY:

Attendance is mandatory. I frown on tardiness. If you are frequently late to class, please review your schedule and make the necessary adjustments. Late arrivals are disruptive to class, they adversely affect the performance of all.

If you are late to a quiz or exam you will not be allowed to take it.

UNIVERSITY ACADEMIC INTEGRITY STATEMENT:

Students are responsible for proper conduct and integrity in all of their scholastic work. They must follow a professor's instructions when completing tests, homework, and laboratory reports, and must ask for clarification if the instructions are

COURSE SCHEDULE

Week 1	Week 2
Solving Linear Equations in One Variable	Solving Linear Inequalities
Solving Linear Equations with Fraction and	Solving Absolute Value Equations and
Decimal Coefficients	Inequalities
An Introduction to Problem Solving	nequanties
Percent Change and Interest Applications	
Week 3	Week 4
The Rectangular Coordinate System and	Equations of Parallel and Perpendicular Lines
Graphing Linear Equations	Graphing Linear Inequalities
Graphing Linear Equations with Intercepts	Introduction to Functions
The Slope of a Line	Function Notation
Graphing Linear Equations with Slope	The Vertical Line Test and Graphs of
Applications of Slope and Parallel and	Functions
Perpendicular Lines	
Equations of Lines	
1	
Week 5	Week 6
Solving Systems of Linear Equations in Two	Adding and Subtracting Polynomials and
Variables by Graphing	Polynomial Functions
Solving Systems of Linear Equations in Two	Multiplying Polynomials
Variables Algebraically	Special Products of Binomials and Multiplying
Systems of Linear Equations in Two	Polynomial Functions
Variables and Problem Solving	Dividing Polynomials and Polynomial
Mixture Problems and Systems of Linear	Functions
Equations in Two Variables	
Solving Systems of Linear Inequalities	
Wook 7	Wook 8
Use the remainder and factor theorems	Neth o Domain of Pational Expressions and
The Greatest Common Eactor and Eactoring	Simplifying Pational Expressions
hy Grouping	Multiplying and Dividing Rational
Eactoring Trinomials	Expressions
Factoring Special Products	Adding and Subtracting Rational Expressions
Solving Polynomial Equations by Eactoring	Simplifying Complex Rational Expressions
Manage	Solving Polynomial Equations by Eactoring
Manage	Solving Polynomial Equations by Pactoring
	MID-TERM EXAM
Week 9	Week 10
Operations with Radical Expressions	Proportions and Similar Figures with Rational
	Equations

Dividing Radical Expressions and	Uniform Motion, Work, and Problem Solving
Rationalizing Denominators	Understanding Radical Expressions
Solving Rational Equations and Using	Simplifying Radical Expressions
Rational Functions	Rational Exponents
	-
Week 11	Week 12
Solving Radical Equations	Solving Quadratic Equations Using the Square
Radical Functions	Root Property
Introduction to Complex Numbers	Solving Quadratic Equations by Completing
Multiplying and Dividing Complex Numbers	the Square
	Solving Quadratic Equations Using the
	Quadratic Formula
	Solving Equations by Using Quadratic
	Methods
Week 13	Week 14
Problem Solving with Quadratic Equations	Transformations of Parabolas
Parabolas and Their Properties	Graphing Quadratic Functions
Graphing Quadratic Functions	Introduction to Logarithm
WEEK 15	
KEVIEW	