LINCOLN UNIVERSITY
SPRING 2015 COURSE SYLLABUS

Course Number: DI 10
Course Title: Physical Principles of Ultrasound
Course Credit: 3 units (45 lecture hours)
Day / Time: Thursday, 9:00 – 11:45 AM
Instructor: Chris T. Nguyen, Ph.D. (*)

COURSE DESCRIPTION
This course introduces ultrasound physical principles and instrumentation. Topics include sound wave mechanics, transducers, ultrasound equipment, Doppler physics, imaging modes, artifacts, quality, bio-effects, and safety techniques. (3 units)
Prerequisite: SCI 10 or equivalent

COURSE OBJECTIVES AND STUDENT LEARNING OUTCOMES
Upon satisfactory completion of this Course, the students will be able to:
1. Describe the characteristics of sound wave
2. Explain the fundamental requirements for sound to travel
3. Discuss medium stiffness, density
4. Explain the difference between pulsed wave and continuous wave
5. Relate frequency / period, pulse repetition frequency / pulse repetition period
6. Discuss duty factor, pulse duration, spatial pulse length
7. Explain different modes of scatterings
8. Explain the three processes in which attenuation occurs
9. Explain how attenuation is calculated
10. Identify elements of an ultrasound transducer. Types of probes
11. Relate single crystal, arrays, matrix, mechanical/electronic probes
12. Explain characteristics of a transducer, frequency, crystal thickness, matching layers
13. Relate frequencies, bandwidth, quality factor
14. Discuss echogenicity: hyperechoic, hypoechoic, isoechoic
15. Relate near zone, far zone, focal zone, beam width
16. Discuss attenuation, penetration. Resolutions, wavelength, line density, frame rate
17. Relate impedance / reflection, velocity / refraction
18. Identify different components of an ultrasound system
19. Discuss transmit power, receiver gain, TGC, dynamic range, pre-processing, post-processing, persistence
20. Learn 2D-imaging, 3D-imaging, M-mode, Doppler mode, color flow imaging, contrast imaging, harmonic imaging, PW Doppler, CW Doppler, tissue Doppler imaging, Color M-node
21. Discuss different types of flows: plug, laminar, parabolic, turbulent, Doppler effects
22. Discuss artifacts: reverberation, mirror image, comet tail, ring-down, shadow, enhancement, edge shadow, speed error, registration error, section thickness, aliasing, Side lobe / grating lobe
23. Discuss probe and system quality & reliability, safety, phantom, calibration, maintenance
24. Discuss ALARA, thermal bioeffect, mechanical bioeffect, cavitation, temperature elevation
25. Operate ultrasound system and perform basic scanning

The two main objectives of this Course are:
- Prepare the students for the ARDMS Board Registration Test
- Show the students how to properly, effectively perform US Systems

INSTRUCTIONAL METHOD
Instructional methods will include lectures by the Instructor and Lab. under his guidance. Classroom activities are collaborative – students should help one another in Class as well as in Lab. The Instructor will be available to help students with all tutorials and other assignments. The Course consists of 15 lectures, weekly quizzes, 1 Midterm, 1 Final, and several laboratory sessions. Attendance will be recorded at every class meeting.

SCHEDULE

Lecture #1 covers items 1, 2 & 3
Lecture #2 covers items 3, 4 & 5. Quiz on Lecture #1
Lecture #3 covers items 7, 8 & 9. Quiz on Lecture #2
Lecture #4 covers items 10, 11 & 12. Quiz on Lecture #3
Lecture #5 covers items 13, 14 & 15. Quiz on Lecture #4
Lecture #6 covers items 16 & 17. Quiz on Lecture #5
Lecture #7 reviews items 1 to 17 to prepare for Mid-term. Quiz on Lecture #7
Lecture #8: MID-TERM. Lecture on item 18
Lecture #9 covers items 19 & 20. Quiz on Lecture #8
Lecture #10 covers items 21 & 22. Quiz on Lecture #9
Lecture #11 covers items 23 & 24. Quiz on Lecture 10
Lecture #12 reviews all items from 1 to 24. Quiz on Lecture #11
Lecture #13 reviews all items from 1 to 24, introduces 600+ ARDMS Physics Test Questions
Lecture #14 reviews all items from 1 to 24, answers to 600+ ARDMS Physics Test Questions
Lecture #15: FINAL. Celebration!

EVALUATION is based on
- Attendance, Lab participation
- Quizzes
- Mid-term exam, Final exam
Grading Scale:

Class Attendance and Lab. 10%
Quizzes 25%
Mid-Term Exam 25%
Final 40%
Maximum Total Score 100%

Grading guidelines: 91 to 100% (A-, A), 81 to 90% (B-, B, B+), 71 to 80% (C-, C, C+), 70% (D)

To successfully complete this Course, the student should attend more than 80% of the Lectures, and have a total score of 70% or higher.

RESOURCE MATERIALS

 7th edition (2005) is acceptable.
- ARDMS Physics Test samples from different sources
- Ultrasound Physics Review by Davies Publishing (2009)

(*) AFFILIATIONS

- Member of AIUM (American Institute of Ultrasound in Medicine
- ASE (American Society of Echocardiography)
- HMS-PGA (Harvard Medical School Postgraduate Association)
- ISEE CG (International Society of Electrocardiography)
- Member of CFA (California Faculty Association)
- Reviewer Board Member of the Journal “Ultrasound in Medicine”, American Institute of Ultrasound in Medicine
- Advisory Editorial Board Member of the Journal “Ultrasound in Medicine and Biology”, World Federation of Ultrasound in Medicine and Biology

CONTACT: cnguyen@lincoln.edu or chinguyen39@gmail.com
Home Phone: 510-489-8727 or Cell. Phone: 498-439-3448

OFFICE HOURS: Contact Dr. Chris T. Nguyen for appointment

STUDENT LEARNING FEEDBACK: Results of the actual ARDMS Physics Test is gauged as learning feedback of my students.

Syllabus Updated: 01/20/2015